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INTRODUCTION
Vestibular stimulated myogenic potentials (VEMPs) are vestibular reflexes thought to originate from otolithic end organs. VEMPs 
are recorded from the extraocular and cervical muscles. Vestibular organs are stimulated by air or bone pathways to elicit these 
reflexes. To stimulate these reflexes, short bursts of loud air-conducted sound or bone-conducted skull vibration are used. Surface 
electrodes are used to record the muscle activity [1].

Ocular VEMPs (oVEMPs) are recorded from the extraocular muscles. Inferior oblique muscles reflect the otolithic function of the contralat-
eral utricle [2, 3]. The upward gaze increases the amplitude of the response recorded in oVEMP by increasing the inferior oblique muscle con-
traction [4]. The best oVEMP responses are recorded at 400-1,000 Hz range. However, the optimal frequency range is still controversial [5-7].

Chirp signal is used to increase the synchronous activity of the hearing nerve [8]. Especially, CE-chirp stimulation has been increas-
ingly used in audiological tests, such as auditory brain responses (ABRs) and auditory steady-state responses [9].

Knowledge on waveform characteristics of oVEMP in response to chirp stimulus is very limited. This study aims at comparing the 
tone-burst (TB) and narrow-band (NB) CE-chirp stimuli in terms of amplitude, latency, and interaural asymmetry ratio (IAR).

MATERIALS AND METHODS

Subjects
In this prospective study, we enrolled 60 healthy subjects (27 men, 33 women) with a mean age of 25.83 (range 18-48) years. All the 
subjects underwent neuro-otological evaluation including audiometric examination. Individuals without neurological or otological 
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illnesses with normal pure tone audiometry and tympanometry were 
included. All the subjects signed the consent form before the tests.

All of the procedures were performed in accordance with the Dec-
laration of Helsinki and were approved by the Ethics Committee of 
University of Health Science Turkey (18/269).

Ocular VEMP Recording
oVEMP recording was performed in a quiet room in a sitting position. 
Surface electrodes were used. Electrodes’ impedance level was set 
below 5 kΩ. The test was performed with Interacoustics Eclipse EP 15 
(Eclipse EP15; Interacoustics, Assens, Denmark). In each eye, the neg-
ative electrode was placed 1 cm below the lower eyelid (on inferior 
oblique muscle), the positive electrode was placed on the chin, and 
the ground electrode was placed on the forehead (Ambu®Neuroline™ 
720; Ambu, Ballerup, Denmark). The subjects were asked to look at a 
fixation point approximately 60 cm from the eyes and had an upward 
gaze of approximately 30°.

We used 500 Hz TB, and the stimuli intensity was 100 dB normalized 
hearing level (nHL). The device was calibrated by licensed technical 
personnel according to the International Organization for Standard-
ization 389-6 standards. For 500 Hz TB, rise–fall and plateau time were 
2 ms (2-2-2). Furthermore, 500 Hz NB CE-chirp (360-720 Hz) stimulus 
was also delivered at 100 dB nHL intensity; stimulus duration was 9 
ms. Stimulus rate was set to 5.1/s, analysis time to 55 ms, and polarity 
rarefaction. Total of 250 stimuli were averaged. 

The electromyography was amplified (10,000×) and was bandpass 
filtered (10-1,200 Hz). Calibrated insert headphones (Ear Tone ABR 
3A; 3M, Minneapolis, USA) were used. 

Evaluation of Test Results
For each stimulus, P1-N1 waveform was observed. For each stimulus 
and each ear, P1 latency, N1 latency, and P1N1 amplitude were re-
corded. IAR was also calculated (IAR=left ear P1N1 amplitude−right 
ear P1N1 amplitude/left ear P1N1 amplitude+right ear P1N1 ampli-
tude). When the same waveform with the same latency was obtained 
in 2 repeated tests, the waveform was accepted to take into account.

Statistical Analysis
Data were analyzed with the software Statistical Package for the 
Social Sciences version 20.0 for Mac (IBM Corp.; Armonk, NY, USA). 
Distribution of the results was analyzed using the Shapiro–Wilk test. 
When normal distribution was observed, groups were compared us-
ing the paired t-test. Otherwise, the groups were compared with the 
Wilcoxon test. p<0.05 was considered statistically significant.

RESULTS
There were 60 volunteers, and their mean age was 25.83 (range, 18-
48 years) years. Both the stimuli evoked oVEMPs in all the subjects. 
P1 and N1 latencies were significantly shorter in chirp stimulus than 
in TB stimulus for both the sides (p<0.0001). Chirp stimulus evoked 
more robust oVEMP amplitudes compared with TB stimulus for both 
the sides (p<0.0001). TB and CE-Chirp responces in right ear are 
shown in Figure 1 and in left ear are shown in Figure 2. IAR for TB 
stimulus was 0.13±0.11, and IAR for chirp stimulus was 0.13±0.11. 
There was no significant difference in IAR between the two types of 
stimuli (p=0.928). Descriptive statistics of oVEMP by stimuli types are 
shown in Table 1.

DISCUSSION
Ocular VEMP is a noninvasive electrophysiological measure that 
shows the function of the contralateral utricle and the superior divi-
sion of the vestibular nerve [10]. oVEMP plays an important role in the 
diagnosis of superior canal dehiscence, vestibular neuritis, benign 
paroxysmal positional vertigo, vestibular schwannoma, Menière’s 
disease, and central vestibular disorders [1].

There are many factors affecting oVEMP response, such as stimulus 
frequency, stimulus level, gaze elevation, and electrode location. Re-
sponse rates, amplitudes, and latency are directly affected by these 
factors [4].

The main objective of this study is to compare the TB and NB CE-
chirp stimuli in terms of amplitude, latency, and IAR. We obtained a 
very high response rate (100%). However, Özgür et al. [11] preferred TB 

• oVEMP is a myogenic response which is originated from 
utricle and activates superior vertibular nerve.

• Chirp signal is used to increase the synchronous activity of 
the hearing nerve.

• NB CE-chirp stimulus is an effective stimulus to evoke oVE-
MP with higher amplitudes and shortened latencies.

MAIN POINTS

Figure 1. Tone-burst (top) and chirp (bottom) evoked oVEMPs on right side. 
Note the differences in latencies and amplitudes of the waves and waveform 
quality of oVEMP in response to tone-bursts and chirps.

Figure 2. Tone-burst (top) and chirp (bottom) evoked oVEMPs on left side. 
Note the differences in latencies and amplitudes of the waves and waveform 
quality of oVEMP in response to tone-bursts and chirps.
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stimulation rather than chirp stimulus because of a higher response 
rate for cervical VEMP. On the basis of our findings, one can propose 
that with chirp stimulus, latencies were shorter, and amplitudes were 
higher. Waveform morphology was also better. These results clear-
ly show that 500 Hz NB CE-chirp stimulus is effective to evoke oVE-
MP. This result is consistent with the results of Walther et al.,[12] who 
compared band-limited chirp stimulation and short TB stimulation in 
healthy individuals. However, consistent with the findings of Özgür 
et al. [11], which showed lower amplitudes with chirp stimulus, Zakaria 
et al. [13] also found lower amplitudes with their custom-made chirp 
stimulus.

We also checked contralateral wave recordings to make sure that we 
have evaluated the correct measurements and also to avoid ipsilat-
eral muscle responses. On the contralateral waves, we observed pro-
longed latencies and decreased amplitudes shown in Figure 3.

In healthy individuals, stimulus frequencies between 400 and 800 Hz 
have been shown to be the most effective range for generating oVE-
MP [6, 7]. These findings made the authors of these studies think that 
tuning was determined at or before the level of the vestibular nucle-
us with the greatest contribution of otolith organs [4]. Cebulla et al. [14] 
published the results of their pilot study in which they used sequen-

Figure 3. Tone-burst and chirp stimulus wave examples with contralateral waves. C indicates contralateral waves. Note the different morphology and character-
istics of the waves in response to each tone-burst and chirp stimuli, consistency of response repetitions, and also latency shift in contralateral waves.

 Right 500 Hz Right 500 Hz  Left 500 Hz Left 500 Hz 
 tone-burst narrow-band chirp p tone-burst narrow-band chirp p

P1 latency (ms)

mean±SD 15.31±1.64 9.77±1.46  15.70±1.54 9.84±1.47

median 15.33 9.67 
<0.0001

 15.67 9.67 
<0.0001

min-max (12.33-22.67) (6.67-16.00)  (10.67±21.00) (6.67±15.67)

IQR 1.34 1.33  1.67 1.67

N1 latency (ms)

mean±SD 10.73±1.57 5.12±1.64  10.53±1.33 5.08±1.45

median 10.16 5.00 
<0.0001

 10.16 4.83 
<0.0001

min-max (9.33±19.00) (3.33±13.33)  (8.00±16.00) (3.00±11.33)

IQR 2.00 1.67  1.57 1.67

P1N1 amplitude (μV)

mean±SD 12.66±10.09 17.08±13.41  11.87±8.56 16.25±11.75

median 9.57 17.08 
<0.0001

 8.77 13.19 
<0.0001

min-max (2.83-45.97) (2.14-56.45)  (1.60-42.13) (3.03-50.6)

IQR 9.58 13.04  1.25 1.67

ms: millisecond; SD: standard deviation; IQR: interquartile range; μV: microvolt.
p<0.05 was considered statistically significant

Table 1. oVEMP results by stimuli type (mean±standard deviation, median, minimum-maximum values)
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tial and quasi-simultaneous NB chirps for evoking cervical evoked 
myogenic potentials and they have found that the amplitudes were 
highest at 500 Hz as expected. Therefore, we used 500 Hz band-lim-
ited chirp stimuli and 500 Hz TB stimuli in this study. To avoid muscle 
fatigue, NB CE-chirp and TB stimuli were delivered in random order.

Literature was focused on the use of chirp stimulus in ABR testing. 
In ABR, wave V latency is shorter in chirp stimulus than in any other 
stimuli [15]. It is believed that it happens because stimulation at all the 
frequency regions of the cochlea provides a faster cochlear stimula-
tion [11]. We obtained P1 and N1 waves at shorter latencies with NB 
CE-chirp stimuli, which are in compliance with the literature. Proba-
bly, TB stimulus’ rise–fall time also causes this delay.

The upward gaze is one of the main factors that affect oVEMP ampli-
tude and response rate because it is believed that an upward gaze 
makes the inferior oblique muscle more superficial. Murnane et al. [4] 
reported an increased response rate of oVEMP testing after 20° gaze 
elevation. Govender et al. [16] suggested that maximum gaze eleva-
tion should be applied before deciding that the response is absent. 
We used 30° upward gaze and obtained a 100% response rate.

Average threshold of sound level suggested by Wang et al. [17] is 110 
dBpeak SPL. In another study, Murnane et al. [4] had an average oVEMP 
threshold of 125 dB peak SPL at 500 Hz. We used 100 dB nHL and ob-
tained 100% response rates, which can be affected by sound level. 

The limitation of this study is the fact that it lacks patient groups. 

CONCLUSION
Narrow-band CE-chirp stimulus is an effective stimulus to evoke 
oVEMP with higher amplitudes and shortened latencies. NB CE-chirp 
might be a promising stimulus for clinical use.
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