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BACKGROUND: The measurement of low-frequency cubic distortion product otoacoustic emission, for example, 0.5-kHz cubic distortion prod-
uct otoacoustic emission, is often severely affected by background noise, and currently 0.5-kHz cubic distortion product otoacoustic emission is 
not commonly applicable in clinical setting.

METHODS: The fundamental part of current study was the optimization of recording technology to reduce noise interference with the measure-
ment of 0.5-kHz cubic distortion product otoacoustic emission and to establish the response patterns of cubic distortion product otoacoustic 
emission across speech frequencies from 0.5 to 8kHz in the presence of normal hearing and noise-induced hearing loss.

RESULTS: After a series of optimization, a clinically applicable technology of measuring 0.5-kHz cubic distortion product otoacoustic emission 
was successfully completed via animal model. Cubic distortion product otoacoustic emission was recorded in 6 guinea pigs across speech fre-
quencies from 0.5 to 8kHz before and after exposure to white bandnoise between 0.5 and 2 kHz. After noise exposure, significant reduction in 
the signal-to-noise ratio of cubic distortion product otoacoustic emission was found at 0.5 and 2 kHz, indicating our recording technology was 
sensitive and accurate. Other interesting finding was the reduction in cubic distortion product otoacoustic emiss ion-s ignal -to-n oise ratio at 4 and 
6 kHz although the reduction was not statistically significant probably because of short exposure time. The result implied that the damaging 
effect induced by low-frequency noise exposure might spread upward to high-frequency region.

CONCLUSIONS: Our recording technology was stable and reliable and had the great potentiality to be used in clinical setting.

KEYWORDS:  0.5-kHz cDPOAE, low-frequency noise exposure, noise-nduced hearing loss (NIHL)

INTRODUCTION
Noise-induced hearing loss (NIHL) is becoming increasingly common in our community. Distortion product otoacoustic emissions 
(DPOAEs) are often adopted in clinical setting to evaluate hearing functions. Distortion product otoacoustic emissions depend on 
the electro-mechanical activity of outer hair cells (OHCs). When ear receives 2 simultaneous pure-tone stimuli (primary tone-burst 
F1 and secondary tone-burst F2), OHCs generate a few nonlinear DPOAEs.1 The frequencies of the first and the second primary tones 
are defined as f1 and f2, respectively, (with f1 < f2). The frequencies of DPOAEs (fDP) are mathematically associated with primary-tone 
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frequencies. Of all the nonlinear DPOAEs, the one with the biggest 
magnitude is called cubic DPOAE (cDPOAE) whose frequency is cal-
culated as fDP = 2f1 − f2. The magnitude of cDPOAE is often defined as 
signal-to-noise ratio (SNR).2-4

Cubic DPOAE is produced near f2 area on basilar membrane (BM) 
and launched at fDP region. Then cDPOAE is transmitted backward 
along BM, through middle ear, and into external ear canal where it 
is recorded by microphone, and then cDPOAE-SNR is positively cor-
related with the function of OHCs.5-8

Cubic DPOAE is an objective test of cochlear function, and the 
response pattern of cDPOAE provides an overview of hearing func-
tion from low to high frequency.9 However, when f2 is lower than or 
equal to 0.5 kHz, for example, 0.5-kHz cDPOAE is often interrupted 
by background noise; here, 0.5 kHz indicates the frequency of the 
secondary primary tone-burst (f2).10-14 At present, 0.5-kHz cDPOAE 
and the response pattern of cDPOAE are not commonly available in 
clinics.

There were only a few reports about the measurement of 0.5-kHz 
cDPOAE, and SNR was very small because of noise interruption.15-17 
The measurement of 0.55-kHz cDPOAE was attempted in human, 
and if SNR ≧ 6 dB sound pressure level (SPL) was taken as acceptable 
criteria, successful recording rate was very low as a result of noise 
disturbance.18 So noise interference is an issue in the measurement 
of 0.5-kHz cDPOAE which needs to be addressed urgently.

Our first research goal was to optimize recording technology to con-
trol and reduce background noise so that 0.5-kHz cDPOAE could be 
recorded successfully. The second research goal was to establish the 
response pattern of cDPOAE across speech frequencies from 0.5 to 
8 kHz in the presence of normal hearing and NIHL.

Guinea pig had been used to investigate the effect of noise exposure 
on hearing function.19-21 Cubic DPOAE recorded in guinea pig was 

usually greater than that measured in human;22 however, the differ-
ence was less obvious and predictable when the levels of primary 
tone-bursts were in the range of low to moderate SPL which were 
similar to that used in clinical setting.19,20,23 Thus, guinea pig model is 
appropriate for human cochlear investigation.24-26

METHODS

Animals
Six guinea pigs with normal hearing as estimated by the presence of 
Preyer’s reflex were used in our study. Animals were ~2 months old and 
weighed from 250 to 300 g. The animals were from the same strain, and 
they were genetically identical. All animal procedures were reviewed 
and approved by University Animal Care and Use Committee. The 
protocol number is 201. All experimental methods were performed in 
accordance with the relevant guideline and regulation.

Otoscopy was performed under surgical microscope to ensure ear 
canal clean of debris and cerumen that could obstruct probe tube 
and interfere with the measurement of cDPOAE. Tympanic mem-
brane was also examined to make sure that the membrane color and 
shape were normal.

Instruments
The lab computer used in experiment had an embedded controller 
(National instrument, NI, PXI-8108 Core 2 Duo 2.53 GHz Controller, 
etc.), a 16-bit digital Input/output board (NI, PXI-6221), and a 24-bit 
digital Input/output board (NI, PXI-4461). The instruments used to 
deliver stimuli included a 2-channel audio amplifier (Tucker-Davis 
Technologies Stereo Amp & Power Supply), 2-channel equalizer, and 
2-speaker acoustic system. A stainless steel nosepiece transmitted 
the stimuli generated by speakers into animal ear canal. The instru-
ments used to collect cDPOAE included a probe-tube microphone 
(Knowles Electret Condenser, FG-23329-P07), a Mic. Bias Box, and a 
Mic. Amplifier (Etymotic ER10C).

Band-pass filter was set in Labview Signal Express (National 
Instruments, version 8.5) and was used to generate white band noise 
between 0.5 and 2 kHz. The noise level was set at 5 Vrms (root mean 
square voltage) so that the noise output was equal to 120 dB SPL.

Calibration
The system was calibrated to ensure that auditory stimuli pre-
sented to animal ear were at the set level. System calibration 
included 3 parts, the calibration of reference microphone, the cali-
bration of probe tube, and in-ear calibration. The reference micro-
phone was a Larson-Davis 1/4″microphone (#377B10) which had 
a very flat frequency response (LD2530: ±1 dB 0.02-50 kHz, ±3 dB 
0.02-100 kHz).

The sensitivity of reference microphone was determined by calibra-
tion with a pistonphone. In brief, the levels of pistonphone output 
(dB SPL) and gain of B&K microphone amplifier (dB) were selected, 
the sampling rate and number of spectrum averages at 20 kHz and 
1, respectively, were set, and the calibration was run. In the calibra-
tion procedure, there was no need to specify the frequency of the 
pistonphone tone because it was automatically detected from the 
measured power spectrum. Since the SNR of the measurement was 
very high, it was only necessary to average one response.

MAIN POINTS

• Cubic distortion product otoacoustic emission (cDPOAE) of 0.5 kHz 
was often overlapped by low-frequency noise coming from the 
subject itself. Numerous endeavors had been attempted before; 
however, acceptable cDPOAE signal had not been achieved. Our 
major optimization method was the usage of pass-filter technique 
to remove most of the low-frequency noise and maximize cDPOAE 
signal.

• The major contribution of current research was the successful 
recording of 0.5-kHz cDPOAE with the signal-to-noise ratio above 
10 dB and averaging times of 8. Result showed this recording 
technology could improve the measurability of 0.5-kHz cDPOAE 
without any significant interruption of the major characteristics of 
the evoked cDPOAE. These results were applicable in the clinical 
setting.

• From a technical standpoint, the successful animal experimental 
protocols in which all details had been proved might be a useful 
template for future translation to human research. The current 
study has added more valuable information to the literature on the 
topics of low-frequency hearing test and provided more reliable 
recording technology that could be used in clinical settings.
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The calibration of probe tube was conducted within acoustic assem-
bly to calculate the relationship between the SPL at the end of probe 
tube and the voltage output of acoustic assembly microphone. This 
calibration was made by measuring the SPL near the tip of probe tube 
with reference microphone while simultaneously measuring the volt-
age output of acoustic assembly microphone. The probe-tube calibra-
tion was performed by holding reference microphone at a very short 
distance from the end of probe tube using a calibration coupler. The 
probe tube calibration used the ratio of the output of acoustic assem-
bly microphone to the output of reference microphone, so the SPL of 
acoustic stimuli used for calibration was cancelled out.

In brief, in probe-tube calibration, a chirp (a brief sound that con-
tained all frequencies throughout the range to be calibrated) was 
produced as stimulus by one of the earphone speakers. The stimu-
lus frequency resolution step of calibration was 50 Hz, calibration 
sampling rate was 100 kHz, attenuation of calibration stimulus from 
full scale was 30 dB, and the number of averages of response signals 
was 256. The outputs of acoustic assembly microphone and refer-
ence microphone were measured simultaneously. Then, calibration 
software could compute the ratio of the voltage output of acoustic-
assembly microphone to the SPL at the end of probe tube.

Finally, in-ear calibration was performed right before the measure-
ment of cDPOAE. In brief, chirp was always selected as calibration 
stimulus, frequency resolution step of calibration was was set to 
50  Hz, calibration sampling rate was set to 10 kHz, attenuation of 
calibration stimulus from full scale was set to 30 dB, the number of 
average of response signal was set to 128 and then the in-ear calibra-
tion was run. In-ear calibration involved computing the ratio of the 
voltage applied to earphone speakers to the SPL at the end of probe 
tube (near animal tympanic membrane).

Measurement of Cubic Distortion Product Otoacoustic Emission
Eaton-Peabody Laboratories Cochlear Function Test Suite (CFTS) 
was used to record cDPOAE. Cochlear Function Test Suite was a free 
software provided by the Massachusetts Eye and Ear Infirmary (USA). 
The experimental procedure was similar to that in previous reports.27,28

Cubic DPOAE was measured before and after band noise exposure 
at f2 of 0.5, 2, 4, 6, and 8 kHz, respectively, as these frequencies were 
in the range of human speech. Animals were exposed to white band 
noise at 120 dB SPL for 2 hours. In each animal, the average of 2 ears’ 
measurements was adopted as the final level in statistical analysis.

Surgical-plane anesthesia was reached with intramuscular injec-
tion of a mixture of ketamine and dex-domitor (ketamine 40 mg/kg 
and dex-domitor 0.15 mg/kg). If needed, a maintenance dose of the 
mixture was given every 1 hour. Animal was placed on its side into a 
customized foam bed to make sure that animal position was stable 
during recording procedure. And the foam bed was placed on a warm 
water pad to maintain the animal’s temperature at 37°C. During the 
experiment, the animal’s temperature was monitored with a digital 
rectal probe thermometer.

Optimization of the Measurement of 0.5-kHz Cubic Distortion 
Product Otoacoustic Emission
Background noise usually included 3 sources: instrumentational, 
environmental noise, plus the one coming from subject itself. 

Because of the stationary property of instrumentational and envi-
ronmental noise, increasing synchronous averaging times could 
improve SNR.29 Thus, increasing averaging times was adopted in 
our study to minimize the disturbance of instrumentational and 
environmental noise, but the averaging times in our experiment 
were only 8, as increasing averaging times were time-consuming 
and could cause discomfort to subject. Our averaging times are 
acceptable in clinical setting.

Three methods were adopted to reduce environmental noise: a 
sound-proof box with an appropriate noise-rejection threshold, a 
rubber immittance tip fitted onto the nosepiece of acoustic assem-
bly, and the shielding of acoustic assembly. Cubic DPOAE was 
recorded inside the sound-proof box. The level of environmental 
noise inside the sound-proof box during recording procedure was 
estimated at about 11-dB SPL. A rubber immittance tip was fitted 
onto the nosepiece of acoustic assembly. The tip was like a sealing 
ring used to seal ear canal and reduce environmental noise. Acoustic 
assembly was painted with CuPro-Cote conductive copper-bearing 
paint for 3 times, and these paints were electromagnetic shielding 
which could prevent acoustic assembly from picking up environ-
mental noise.

However, it was difficult to deal with the noise coming from subject 
itself. Subject-noise, for example, respiratory sound, cardiovascular 
murmur, swallowing, snoring, and teeth grinding, were usually of 
low frequency. The measurement of low-frequency cDPOAE, such as 
0.5-kHz cDPOAE, was mostly interfered by subject noise.30-32

Fortunately, low-frequency noise could be controlled and reduced 
by digital filtering technique.31,33 Based upon this concept, an opti-
mal pass-filter technique was adopted in our research to reduce the 
low-frequency noise coming from the subject itself and to maximize 
0.5-kHz cDPOAE-SNR. And this digital filtering technique was our 
important optimization method to reduce subject noise.

In brief, cDPOAE was recorded by probe-tube microphone. The 
microphone’s output was amplified by ER10C (Etymotic Research) 
which was then connected to the lab computer. Digital pass filter 
was setup by LabView Signal Express, raw signal of cDPOAE was put 
through the filter to remove unwanted noise, and then the “pure=” 
signal was analyzed by CFTS. In this way, low-frequency noise coming 
from animal itself were controlled and reduced, and 0.5-kHz cDPOAE-
SNR was optimized and maximized. Other optimization methods 
included the adjustment of input/output parameters, for example, 
the f2/f1 ratio was set at 1.22 to evoke the most robust cDPOAE.

Calculation of Cubic Distortion Product Otoacoustic Emission-
Signal -to-N oise Ratio
The level of F2 stimulus ranged from 40- to 60-dB SPL. When F2 level 
was ≤60-dB SPL, the recorded cDPOAE was considered as real response 
from OHCs, when F2 level was >60-dB SPL, the recorded signal was 
taken as artifact. When F2 level reached 60-dB SPL (F1 = F2 + 10 = 70-dB 
SPL), amplitude of cDPOAE plateaued. Cubic DPOAE-SNR was calcu-
lated as cDPOAE plateau value minus noise-floor level.34

Statistical Analysis
Based on G-Power analysis, when the sample size was 6, the effect 
size was in the range of 0.8-0.9, thus sufficient statistical power was 
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available to detect the difference between and within groups if such 
difference existed. Also, it was common to have a sample size of 
6 ears in previous animal experiments.35,36-38

Repeated measure of analysis of variance along with Bonferroni 
correction was used to compare cDPOAE-SNR before and after 
noise exposure, with P  < .05 adopted as an indication of statistical 
significance.

RESULTS

Successful Recording of 0.5-kHz Cubic Distortion Product 
Otoacoustic Emission After Optimization
Cubic DPOAE measured at f2 of 0.5 kHz was expressed as 0.5-kHz 
cDPOAE; however, fDP of cDPOAE itself was 0.34 kHz. Many cut-off 
values of low- and high-frequency pass filter were attempted cover-
ing the range from 0 to 0.68 kHz. For each value of low-frequency 
pass filter, high-frequency pass filters were varied so that a better 
and strong cDPOAE signal could be achieved. After a series of experi-
ments, it was found out that when low-frequency pass filter was set 
at 0.17 kHz and high-frequency pass filter was set at 0.51 kHz, the 
magnitude of 0.5-kHz cDPOAE was maximal. Our technique was 
optimal in the sense that the pass filters were set according to the 
value of fDP, low-frequency pass filter was set at fDP − 1/2 fDP, and high-
frequency pass filter was set at fDP + 1/2 fDP.

Figure 1 and 2 show the measurements of 0.5-kHz cDPOAE before 
and after optimization, respectively. Before optimization, 0.5-kHz 
cDPOAE-SNR was unstable, and in some animals, 0.5-kHz cDPOAE 
could not be recorded at all. After optimization, 0.5-kHz cDPOAE-SNR 

was greatly improved. The SNR in Figure 2 was more obvious and 
stable than that in Figure 1.

Research Goal 2—Establishment of Response Patterns of Cubic 
Distortion Product Otoacoustic Emission in the Presence of 
Normal Hearing and Noise-Induced Hearing Loss
The overall response of an auditory test across all tested frequencies 
is called response pattern. In Figure 3, cDPOAE-SNR was plotted as 
function of f2 of 0.5, 2, 4, 6, and 8 kHz to establish the response pat-
tern of cDPOAE.

The response pattern of cDPOAE before noise exposure showed that 
the lowest SNR of cDPOAE was at 0.5 kHz and the highest was at 6 
kHz. With the increment of f2, cDPOAE-SNR had a tendency to increase. 
After noise exposure, reduction in SNR was observed at 0.5 and 2 kHz 
as compared to that before noise exposure. The response pattern 
before noise exposure reflected the standard characteristics of normal 
cochlea, and the change in response pattern after exposure provided a 
general estimation of hearing loss across all tested frequencies.

Figure 3 shows the difference in cDPOAE-SNR before and after noise 
exposure, indicating that band-noise exposure could cause signifi-
cant reduction in cDPOAE-SNR at 0.5 and 2 kHz, P  < .05; this implied 
our recording technology is sensitive and accurate.

Another interesting finding was that exposure to white band noise 
between 0.5 and and 2 kHz could produce hearing losses at higher 
frequencies, such as at 4 and 6 kHz; however, the reduction in 
cDPOAE-SNR at 4 and 6 kHz was not statistically significant, probably 
because of short exposure time.

Figure 1. The recording of 0.5-kHz cDPOAE before optimization. In figure 1 and 2, the left part showed the parameters of stimulus and averaging times. The 
middle section was spectrum display, the top graph was full spectrum, the bottom was a small range centered on the frequency of 2f1-f2. The right panel showed 
the measured SPL of F1, F2, 2F1-F2, 2F1-F2 noise floor, F2-F1, F2-F1 noise floor as function of F2 stimulus level. In figure 1, when F2 stimulus level was equal to 
or low than 60 SPL, the cDPOAE was overwhelmed by background noise, the SNR was very low and meaningless; please note that when F2 stimulus level was 
higher than 60 SPL, cDPOAE was considered as artifact. cDPOAE, cubic distortion product otoacoustic emission; SPL, sound pressure level. 
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DISCUSSION

Significance of the Optimization of Recording Rechnology
Because of noise interruption, it was difficult to record low-fre-
quency cDPOAE, or cDPOAE-SNR was very small and unstable. The 
level of background noise is high at low f2, and the noise level 
tends to decrease with the increment of f2. For example, when 
f2  is  equal to or below 1 kHz, the noise level is about at least 
18 dB higher than that when f2 is 8.0 kHz.39-41 Thus, the diagnostic 
value of cDPOAE was poor when f2 is equal to or below 1 kHz; in 
clinical  setting, cDPOAE is useful only when f2 ranges from 2 to 
8 kHz.42

And the performance of cDPOAE was poor at low frequency in terms 
of the correlation between cDPOAE and behavioral hearing threshold 
(BHT). Larger discrepancy of the correlation was noted at low frequency 
as compared to that at high frequency.43 The correlation between 
cDPOAE and BHT at high frequency was strong. On the other hand, the 
association between cDPOAE and BHT at low frequency was weak and 
not reliable.16,44 In a word, BHT could be predicted by cDPOAE at high 
frequency but could not be predicted by cDPOAE at low frequency. 
At present, 0.5-kHz cDPOAE is not commonly available for patients.

Before our optimization, the characteristics of cDPOAE have not 
been thoroughly examined across the speech frequency range 

Figure 2. The recording of 0.5-kHz cDPOAE after optimization. The cDPOAE-SNR increased gradually with the growth of F2 stimulus level and reached the 
maximum plateau when F2 stimulus level was 60 SPL. The comparison between figure 1 and 2 showed that background noise reduced and SNR became distinct 
and stable after optimization. cDPOAE, cubic distortion product otoacoustic emission; SNR, signal-to-noise ratio; SPL, sound pressure level.

Figure 3. The response pattern of cDPOAE before and after noise exposure. The response pattern before noise exposure showed the lowest cDPOAE-SNR was 
at 0.5 kHz, the highest was at 6 kHz, and with the increment of tested frequency, cDPOAE-SNR had a tendency to increase, the response pattern before noise 
exposure may represent the standard characteristics of normal cDPOAE. The response pattern after noise exposure showed, significant reduction in the cDPOAE-
SNR was observed at 0.5 and 2-kHz; reduction was also observed at 4 and 6 kHz, but not statistically significant.
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(including 0.5 kHz) due to the fact that the measurement of low-
frequency cDPOAE is often deteriorated by background noise. The 
significance of current study was that stable 0.5-kHz cDPOAE can 
be successfully measured after our optimization of recording tech-
nology, and the technology used in the study can provide valuable 
information for its future clinical application.

Extensive Cochlear Damage Induced by Low-Frequency  
Noise Exposure
In the study, cDPOAE-SNR measured before noise exposure was used as 
baseline level and then animals were exposed to low-frequency band 
noise, and significant reduction in cDPOAE-SNR was observed at 0.5 
and 2 kHz, respectively, after noise exposure. Furthermore, decrease in 
cDPOAE-SNR at 4 and 6 kHz was also noticed after noise exposure. These 
findings suggested that exposure of low-frequency band noise could 
cause damage to the corresponding partition in cochlea’’s BM, and the 
damage effect might spread upward to high-frequency region.

The Mechanism About the Reduction in Cubic Distortion 
Product Otoacoustic Emiss ion-S ignal -to-N oise Ratio After 
Noise Exposures
Cubic DPOAE is generated by OHCs. It is expected that cDPOAE-SNR 
will decrease after noise exposure; however, the mechanism underly-
ing the reduction in cDPOAE-SNR is complex. Exposure to noise of 
high SPL could induce damage and or death of OHCs, so the number 
of functioning OHCs became smaller after exposure, and cDPOAE-
SNR fell down correspondingly. On the other hand, the remaining 
functioning OHCs might be less efficient in energy transduction with 
respect to the transformation between mechanical and electrical 
energy, and less efficient in energy transduction of OHCs could also 
lead to the reduction in cDPOAE-SNR.45,46

Some research indicated that noise exposure could cause abnormal 
change in potassium gating system, also resulting in less-efficient 
energy transduction of OHCs.46,47 However, the detailed mechanism 
about noise-induced damage of OHCs remains unclear.

Response pattern of Cubic Distortion Product Otoacoustic 
Emission
Response pattern of cDPOAE was the plot of cDPOAE-SNR as func-
tion of tested f2. From the response pattern of cDPOAE before noise 
exposure, it was noted that cDPOAE-SNR had a tendency to rise 
when the tested frequencies increased. There might be 2 explana-
tions for this finding, the first explanation was that low-frequency 
cDPOAE-SNR was easily interrupted by severe background noise so 
that the cDPOAE-SNR was small, whereas the interruption was mild 
at high frequency, and the cDPOAE-SNR became large. The second 
explanation was that the auditory acuity of guinea pig was better at 
high frequency than that at low frequency. In guinea pig, the most 
appropriate frequency range of hearing was between 4 and 20 kHz; 
thus, the cDPOAE-SNR recorded at appropriate frequency range 
(above 4 kHz) was larger than that recorded at the less appropriate 
frequency range (e.g., 0.5 kHz).48

The response pattern of cDPOAE provided an overview of OHCs func-
tion across the tested frequencies. The comparison of response pat-
terns before and after noise exposures could be very useful for the 
estimation of hearing loss.

The limitation of current study was that no human experiment was 
carried out. In future, we will do experiment to translate the result of 
animal study to clinical setting.
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