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Original Article

OBJECTIVE: Sanguinarine is an alkaloid obtained from the root of Sanguinaria canadensis and other plants from the Papaveraceae family and is well 
known to possess a broad range of biological functions, such as antimicrobial, antifungal, anti-inflammatory, and antineoplastic activities. We aimed to 
specify the in vitro effect of sanguinarine on the House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and to compare this effect with the ototoxic effect 
of cisplatin (CDDP). 

MATERIALS and METHODS: We performed cell proliferation assay for determining the in vitro effect of sanguinarine alone and compared it with the 
effect of cisplatin. Flow cytometry annexin-V apoptosis detection was performed. 

RESULTS: We found that sanguinarine and CDDP inhibited the cell growth in a dose-dependant manner in HEI-OC1 cells after 24 h of incubation. In 
sanguinarine-treated group, apoptosis was 6.6%, necrosis was 26.7%, and the cell viability was 66.7%. Further, in CDDP-treated group, apoptosis was 
5.6%, necrosis was 45.4%, and the cell viability was 48.7%. According to the annexin-V apoptosis detection results, we found that sanguinarine caused 
3.9% apoptosis and 1.3% necrosis, while CDDP caused 2.9% apoptosis and 20% necrosis on HEI-OC1 cells. 

CONCLUSION: Our findings suggested that lower doses of sanguinarine are promising antineoplastic agents, which did not indicate any toxic effect on 
HEI-OC1 cells. Application of these data to clinical practice requires further support by in vivo studies.
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INTRODUCTION
Sanguinarine (13-methyl-benzodioxolo-[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium) is an alkaloid obtained from the root of San-
guinaria canadensis and other plants from the Papaveraceae family [1]. The mechanism of action of benzophenanthrid alkaloids is 
associated with the cell death signaling pathway, and apoptosis induction is shown in various cancer cell lines. Apoptosis caused by 
sanguinarine has been shown through different ways, such as mitochondrial damage, nuclear factor kappa-light-chain enhancer of 
activated B cells activation, and cell cycle arrest [2]. Sanguinarine is shown to inhibit microtubule polymerization and can intercalate 
double-stranded DNA [3, 4]. The caspase activation, depletion of cellular glutathione, downregulation of extracellular signal-regulat-
ed kinases, modulation of B-cell lymphoma 2 family, and upregulation of DR-5 are the mechanisms of antitumoral action of sangui-
narine [4-7]. It is shown that the cytotoxic activity of benzophenanthridine is propotional to the DNA-binding feature and induction of 
DNA fragmentation. According to recent studies, the cytotoxic and DNA damaging effect of sanguinarine is more specific to cancer 
cells than to normal cells [4, 8]. We have already demonstrated that sanguinarine causes apoptosis in human neuroblastoma cells. We 
determined the cell death mechanism of sanguinarine was particularly via cytotoxic and apoptotic effects occuring by changing 
the apoptotic gene expressions in human SH-SY5Y and Kelly neuroblastoma cell lines [9]. 

Cisplatin (cisdiammine-dichloro-platinum, CDDP) is one of the most important chemotherapeutic agents used in the treatment of 
both adult and childhood cancers. However, its dose-limiting adverse effects, such as ototoxicity, nephrotoxicity, myelosuppres-
sion, gastrointestinal toxicity, neurotoxicity, and cardiovascular damage, have been shown to be an important obstacle for its utility 
and therapeutic profile [10]. It is found that 25% patients undergo sensorineural hearing loss because of cisplatin ototoxicity. The 
incidence of ototoxicity can be affected by factors, such as the route of administration, age, dietary factors, genetic factors, serum 
protein levels, and a history of cranial irradiation exposure. CDDP can produce both superoxide ions and active oxygen species, 
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such as hydroxyl radicals, and may inhibit antioxidant enzymes in 
normal tissues. This ototoxicity is not limited to hairy cells [11-14]. Be-
cause of side effects that limit the cisplatin use, recent studies have 
focused on finding a novel agent as effective as CDDP with less or no 
adverse effects. Clinical studies regarding herbal drugs for protection 
and/or therapy of tumors have recently become extensive in cancer 
treatment [13, 15, 16]. 

The House Ear Institute-Organ of Corti 1 (HEI-OC1) is a suitable cell 
line for in vitro studies on the ototoxic effect of chemotherapeutic 
agents, such as CDDP. As HEI-OC1 cells carry the molecular charac-
teristics of the organ of Corti sensory cells, the underlying molecular 
mechanism of ototoxicity and candidate protective agents against 
hearing loss caused by ototoxic drugs can be well clarified [17]. There-
fore, we aimed to specify the in vitro effect of sanguinarine on HEI-
OC1 cells and to compare this effect with the ototoxic agent, CDDP. 
To our knowledge, this study was the first to assess the effect of san-
guinarine in in vitro ototoxicity model. 

MATERIALS and METHODS
This study was approved by the local ethics committee of Dokuz Ey-
lül University Medical School. 

HEI-OC1 Cell Culture
The HEI-OC1 cell line was provided by Professor F. Kalinec. It is an im-
mortalized cell line obtained from cochlear cultures of the immorto-
mouse. Kalinec et al. [17] have proposed that the HEI-OC1 cell line was 
an excellent in vitro system with 10% fetal bovine serum (FBS) at 33°C 
under 10% CO2 in air. The cells were grown in 75-cm2 culture flasks 
with no antibiotics and were passaged to 1:2 two times in a week. The 
cells were cultured in 96-well plates as 20000 cells/well. Further, after 
attaching to the plate after 24 h of incubation, we performed dose-de-
pendant cell proliferation analysis of sanguinarine and CDDP. 

WST-1 Cell Proliferation Assay 
CDDP (Hexal; Sandoz, Novartis, Bangladesh), Sanguinarine (Sig-
ma-Aldrich Co; St. Louis, MO, USA), and WST1 (Roche Applied Sci-
ence; Mannheim, Germany) were utilized in this study. They were 
newly prepared before all experiments. Cells were exposed to differ-
ent doses of sanguinarine (0, 2.5, 5, 10, and 20 µM) and CDDP (20 
and 40 µM) for 24 h, and the cell viability was analyzed using Cell 
Proliferation Reagent WST-1 assay kit. WST-1 is a colorimetric assay 
that measures the cell viability based on the cleavage of tetrazolium 
salts to formazan by mitochondrial dehydrogenases in viable cells. 
After treatment, cells were incubated with 10-ul WST-1 solution/well 
for 2 h at 37°C. The 96-well plates were read at 440 nm with a refer-
ence wavelength at 630 nm using a multidetection microplate reader 
(Thermo Instruments Inc; Shanghai, China). 

Flow Cytometry Analysis of Apoptosis
The rate of apoptosis among HEI-OC1 auditory cells treated with 40-
μM CDDP alone and 5-μM sanguinarine alone for 24 h as well as the 
untreated control group was determined using annexin V-FITC (BD 
Annexin V-FITC Apoptosis Detection Kit; Roche Diagnostics GmbH, 
Germany). The flow cytrometric analysis was performed using BD Ac-
curi C6 flow cytometry. The gating strategies were performed based 
on the distribution of the unstained and one-stained (FITC- Annexin 
V or propidium iodide only) control cells on the scatterplot. 

Statistical Analysis
Statistical analyses were performed using Statistical Package for So-
cial Sciences 15.0 for Windows (SPSS; SPSS Inc., Chicago, IL, USA), and 
p values less than 0.05 were considered as statistically significant. 
Non-parametric Mann-Whitney U test with Bonferroni correction 
were also used. All treatment experiments were repeated at least 
three times/six condition to generate statistically relevant data. 

RESULTS

Cell Culture and Survival Analysis According to Dose Range of 
CDDP and/or Sanguinarine
We cultivated HEI-OC1 cells with 20- and 40-µM CDDP for 24 h, and 
CDDP inhibited cell growth in a dose-dependant manner in HEI-OC1 
cells. CDDP inhibited 50% cell growth at 40-µM dose when incubat-
ed for 24 h in the cells (Figure 1). We cultivated HEI-OC1 cells with 
sanguinarine (2.5, 5, 10, and 20 µM) for 24 h. Sanguinarine inhibited 
cell growth in a dose-dependant manner after 24 h of incubation. 
These cell proliferation assay results of sanguinarine for HEI-OC1 cells 
are shown as in Figure 2. The cell viability was 105% in a low san-
guinarine dose (2.5 µM) and decreased to 70% in the highest dose 
of sanguinarine (20 µM). Sanguinarine did not inhibit cell growth at 
5-µM dose (104%; Figure 2). 
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Figure 1. Cell proliferation assay results of CDDP for HEI-OC1 cells (24 h)
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Figure 2. Cell proliferation assay results of sanguinarine for HEI-OC1 cells (24 h)
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Apoptosis in Number
When we evaluated apoptotic and necrotic cell death in the control 
group, apoptosis was 2.7%, necrosis was 25.9%, and the cell viabil-
ity was 71.9% (Figure 3a). In the sanguinarine (5 uM)-treated group, 
apoptosis was 6.6%, necrosis was 26.7%, and cell viability was 66.7% 
(Figure 3b). In the CDDP-treated group, apoptosis was 5.6%, necrosis 
was 45.4%, and cell viability was 48.75% (Figure 3c). According to these 
findings, when we re-calculated the percentages in association with 
the control group, we found that sanguinarine caused 3.9% apoptotic 
cell death and 1.3% necrosis, while CDDP caused 2.9% apoptotic cell 
death and 20% necrotic cell death, as shown in Figure 4. 

DISCUSSION
CDDP is a highly effective chemotherapeutic agent widely used 
for treating various adult and pediatric cancers; however, it has 
dose-limiting serious adverse effects, including nephrotoxicity, neu-
rotoxicity, and ototoxicity. As a result of this obstacle, recent studies 
have focused on finding a novel agent as effective as CDDP with less 
or no adverse effects. An ideal chemotherapeutic agent should be ef-
fective on cancer cells, and it should not affect normal cells. Adverse 
effects of cisplatin on auditory function resulting with progressive 
sensorineural hearing loss have been documented in various studies, 
and although the histopathology of cisplatin ototoxicity has been 

described well, the molecular mechanisms underlying this hear-
ing loss are not completely understood [13, 18]. When we incubated 
HEI-OC1 cells with 20- and 40-µM CDDP, which carry the molecular 
characteristics of the organ of Corti sensory cells and can be used 
as an ototoxicity model in vitro, CDDP revealed cytotoxic effects in 
a dose-dependant manner. Furthermore, CDDP inhibited 50% cell 
growth at 40-µM dose after 24-h incubation. This finding supports 
the literature that CDDP shows cytotoxic effect on cochlear cells. 

Sanguinarine is well known to possess a broad range of biological 
functions, such as antimicrobial, antifungal, anti-inflammatory, and 
antineoplastic activities [19-21]. 

Sanguinarine-induced apoptosis has been detected in human epi-
dermoid carcinoma (A431)[8], human prostate cancer (LNCaP, DU-145, 
PC-3)[22, 23], and breast cancer (MCF-7) cell lines [7], human endocer-
vical (HeLa)[24], human melanoma (M4Beu), human colon adenocar-
cinoma (DLD-1), lung non-small cell carcinoma (A549) [7], human 
uveal melanoma (OCM-1)[25], histiocytic lymphoma (U937), myeloid 
leukemia (ML-1a)[6], human erythroleukemia (K562, JM1) cell lines[6, 

26-28], immortalized human keratinocytes (HaCaT) [26] and human pri-
mary fibroblasts[7, 26]. In addition to this information, we found that 
sanguinarine did not cause ototoxic effect on cochlear cells, while 
cisplatin caused 20% necrosis on cochlear cells. Moreover, when 
we evaluated the effect of sanguinarine on HEI-OC1 cell prolifera-
tion, we found that sanguinarine did not change the cell viability in 
lower doses (2.5 and 5 µM); however, it inhibited the cell growth in 
higher doses, i.e., 10 and 20 µM in approximately 11% and 20%, re-
spectively. These findings revealed that lower doses of sanguinarine 
could be promising reagents not affecting normal HEI-OC1 cells. Al-
though sanguinarine was found to be inhibiting cell growth in higher 
doses, the percentage of this suppression (20%) was less than that 
caused by CDDP (50%) in the dose optimized for in vitro application. 
Our data supported previous findings that sanguinarine was found 
to inhibit diverse human tumor cells at micromolar concentrations, 
without affecting normal cells [29]. Moreover, in our previous study, 
we had found that sanguinarine revealed cytototoxic and apoptotic 
properties in Kelly (nmyc amplification-positive, bad prognosis) and 
SHSY5Y (nmyc amplification-negative, good prognosis) human neu-
roblastoma cells [9].
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Figure 3. a-c. The rate of apoptosis and necrosis among HEI-OC1 auditory cells in the control group (a), treated with 40-μM CDDP alone (b), and 5-μM sanguinarine 
alone for 24 h (c)
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Figure 4. Apoptotic and necrotic percentages of sanguinarine (5 μM)- and CDDP 
(40 μM)-treated HEI-OC1 cells determined by flow cytometry annexin-V and PI 
analysis
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In conclusion, an ideal chemotherapeutic agent must be selective to 
cancer cells and nontoxic to normal cells. CDDP, which is the most 
important chemotherapeutic agent used in the treatment of both 
adult and childhood cancers, has ototoxic effect on hairy cells, lead-
ing to hearing loss. Therefore, recent studies have focused on finding 
novel agents as effective as CDDP with no ototoxicity. In our unpub-
lished data, we have found that sanguinarine revealed cytototoxic 
and apoptotic properties in human neuroblastoma cells, which led 
us to question whether it has cytotoxicity on normal cells. When we 
questioned the effect of sanguinarine on normal cochlear cells, we 
found that sanguinarine did not cause necrosis on HEI-OC1 cells, 
while CDDP caused 20% necrosis. Hence, our data suggested that 
lower doses of sanguinarine are promising agents that did not in-
dicate any toxic effect on HEI-OC1 cells. Application of these data to 
clinical practice requires further support by in vivo studies.
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